Solved

Find the Derivative at Each Critical Point and Determine the Local

Question 135

Multiple Choice

Find the derivative at each critical point and determine the local extreme values.
- y=x29xy=x^{2} \sqrt{9-x}


A)
 Critical Pt.  derivative  Extremum  Value x=00 min 0x=9 undefined  min 0x=3650 local max 38881255\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=0 & 0 & \text { min } & 0 \\x=9 & \text { undefined } & \text { min } & 0 \\x=\frac{36}{5} & 0 & \text { local max } & \frac{3888}{125} \sqrt{5}\end{array}

B)
 Critical Pt.  derivative  Extremum  Value x=9 undefined  min 0x=3650 local max 38881255\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=9 & \text { undefined } & \text { min } & 0 \\x=\frac{36}{5} & 0 & \text { local max } & \frac{3888}{125} \sqrt{5}\end{array}

C)
 Critical Pt.  derivative  Extremum  Value x=00min0x=90min0x=3650 local max 38881255\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=0 & 0 & \min & 0 \\x=9 & 0 & \min & 0 \\x=\frac{36}{5} & 0 & \text { local max } & \frac{3888}{125} \sqrt{5}\end{array}

D)
 Critical Pt.|  derivative  Extremum  Value x=3650 local max 38881255\begin{array}{l|l|l|l}\text { Critical Pt.| } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline \mathrm{x}=\frac{36}{5} & 0 & \text { local max } & \frac{3888}{125} \sqrt{5}\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions