Solved

Find the Derivative at Each Critical Point and Determine the Local

Question 138

Multiple Choice

Find the derivative at each critical point and determine the local extreme values.
- y={8x,x<08+7xx2,x0y = \left\{ \begin{array} { l l } 8 - x , & x < 0 \\ 8 + 7 x - x ^ { 2 } , & x \geq 0 \end{array} \right.


A)
 Critical Pt.  derivative  Extremum  Value x=0 undefined  local min 8x=720 local max 814\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=0 & \text { undefined } & \text { local min } & 8 \\x=\frac{7}{2} & 0 & \text { local max } & \frac{81}{4}\end{array}

B)
 Critical Pt.  derivative  Extremum  Value x=8 undefined  local min 8x=00 local max 814\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=8 & \text { undefined } & \text { local min } & 8 \\x=0 & 0 & \text { local max } & \frac{81}{4}\end{array}

C)
 Critical Pt.  derivative  Extremum  Value x=0 undefined  local min 8x=920 local max 1134\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=0 & \text { undefined } & \text { local min } & 8 \\x=\frac{9}{2} & 0 & \text { local max } & \frac{113}{4}\end{array}

D)
 Critical Pt.  derivative  Extremum  Value x=0 undefined  local min 8x=720 local max 174\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=0 & \text { undefined } & \text { local min } & -8 \\x=\frac{7}{2} & 0 & \text { local max } & -\frac{17}{4}\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions