Solved

Find the Derivative at Each Critical Point and Determine the Local

Question 336

Multiple Choice

Find the derivative at each critical point and determine the local extreme values.
- y={14x212x+154,x1x36x2+8x,x>1y = \left\{ \begin{array} { l l } - \frac { 1 } { 4 } x ^ { 2 } - \frac { 1 } { 2 } x + \frac { 15 } { 4 } , & x \leq 1 \\x ^ { 3 } - 6 x ^ { 2 } + 8 x , & x > 1\end{array} \right.


A)
 Critical Pt.  derivative  Extremum  Value x=10 local min 4x=3.150 local max 3.08\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=-1 & 0 & \text { local min } & 4 \\x=3.15 & 0 & \text { local max } & -3.08\end{array}

B)
 Critical Pt.  derivative  Extremum  Value x=1 undefined  local min 4x=3.150 local max 3.08\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=-1 & \text { undefined } & \text { local min } & 4 \\x=3.15 & 0 & \text { local max } & -3.08\end{array}

C)
 Critical Pt.  derivative  Extremum  Value x=10 local max 4x=3.150 local min 3.08\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=-1 & 0 & \text { local max } & 4 \\x=3.15 & 0 & \text { local min } & -3.08\end{array}

D)
 Critical Pt.  derivative  Extremum  Value x=10 local max 4x=3.15 undefined  local max 3.08\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=1 & 0 & \text { local max } & 4 \\x=3.15 & \text { undefined } & \text { local max } & -3.08\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions