Solved

Estimate the Limit by Graphing the Function for an Appropriate limx2x+2x24=limx212x=14\lim _ { x \rightarrow 2 } \frac { x + 2 } { x ^ { 2 } - 4 } = \lim _ { x \rightarrow 2 } \frac { 1 } { 2 x } = - \frac { 1 } { 4 }

Question 340

Essay

Estimate the limit by graphing the function for an appropriate domain. Confirm your estimate by using L'Hopital's rule.
Show each step of your calculation.
-Which one is correct, and which one is wrong? Give reasons for your answers.
(a) limx2x+2x24=limx212x=14\lim _ { x \rightarrow 2 } \frac { x + 2 } { x ^ { 2 } - 4 } = \lim _ { x \rightarrow 2 } \frac { 1 } { 2 x } = - \frac { 1 } { 4 }
(b)
limx2x+2x24=08=0\lim _ { x \rightarrow 2 } \frac { x + 2 } { x ^ { 2 } - 4 } = \frac { 0 } { - 8 } = 0

Correct Answer:

verifed

Verified

Choice (a) is correct. L'Hôpit...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions