Solved

Graph the Function, Then Find the Extreme Values of the Function

Question 209

Multiple Choice

Graph the function, then find the extreme values of the function on the interval and indicate where they occur.
- y=x+4x5y = | x + 4 | - | x - 5 | on the interval <x<- \infty < x < \infty
 Graph the function, then find the extreme values of the function on the interval and indicate where they occur. - y = | x + 4 | - | x - 5 |  on the interval  - \infty < x < \infty     A)  Absolute maximum is 9 on the interval  [ 6 , \infty )  ; Absolute minimum is  - 9   on the interval  ( - \infty , 3 ]     B)  Absolute maximum is 10   on the interval  [ 5 , \infty )  ;  Absolute minimum is  - 10    on the interval  ( - \infty , 4 ]     C)  Absolute maximum is 8  on the interval  [ 5 , \infty)  ; Absolute minimum is  \mathbf { - 8 } .  on the interval  ( - \infty , 4 ]      D)  Absolute maximum is 9  on the interval  [ 5 , \infty )  ;  Absolute minimum is  - 9  on the interval  ( - \infty , 4 ]


A) Absolute maximum is 9
on the interval [6,) [ 6 , \infty ) ;
Absolute minimum is 9- 9
on the interval (,3]( - \infty , 3 ]
 Graph the function, then find the extreme values of the function on the interval and indicate where they occur. - y = | x + 4 | - | x - 5 |  on the interval  - \infty < x < \infty     A)  Absolute maximum is 9 on the interval  [ 6 , \infty )  ; Absolute minimum is  - 9   on the interval  ( - \infty , 3 ]     B)  Absolute maximum is 10   on the interval  [ 5 , \infty )  ;  Absolute minimum is  - 10    on the interval  ( - \infty , 4 ]     C)  Absolute maximum is 8  on the interval  [ 5 , \infty)  ; Absolute minimum is  \mathbf { - 8 } .  on the interval  ( - \infty , 4 ]      D)  Absolute maximum is 9  on the interval  [ 5 , \infty )  ;  Absolute minimum is  - 9  on the interval  ( - \infty , 4 ]

B) Absolute maximum is 10
on the interval [5,) [ 5 , \infty ) ;
Absolute minimum is 10- 10
on the interval (,4]( - \infty , 4 ]
 Graph the function, then find the extreme values of the function on the interval and indicate where they occur. - y = | x + 4 | - | x - 5 |  on the interval  - \infty < x < \infty     A)  Absolute maximum is 9 on the interval  [ 6 , \infty )  ; Absolute minimum is  - 9   on the interval  ( - \infty , 3 ]     B)  Absolute maximum is 10   on the interval  [ 5 , \infty )  ;  Absolute minimum is  - 10    on the interval  ( - \infty , 4 ]     C)  Absolute maximum is 8  on the interval  [ 5 , \infty)  ; Absolute minimum is  \mathbf { - 8 } .  on the interval  ( - \infty , 4 ]      D)  Absolute maximum is 9  on the interval  [ 5 , \infty )  ;  Absolute minimum is  - 9  on the interval  ( - \infty , 4 ]

C) Absolute maximum is 8
on the interval [5,) [ 5 , \infty) ;
Absolute minimum is 8\mathbf { - 8 } .
on the interval (,4]( - \infty , 4 ]
 Graph the function, then find the extreme values of the function on the interval and indicate where they occur. - y = | x + 4 | - | x - 5 |  on the interval  - \infty < x < \infty     A)  Absolute maximum is 9 on the interval  [ 6 , \infty )  ; Absolute minimum is  - 9   on the interval  ( - \infty , 3 ]     B)  Absolute maximum is 10   on the interval  [ 5 , \infty )  ;  Absolute minimum is  - 10    on the interval  ( - \infty , 4 ]     C)  Absolute maximum is 8  on the interval  [ 5 , \infty)  ; Absolute minimum is  \mathbf { - 8 } .  on the interval  ( - \infty , 4 ]      D)  Absolute maximum is 9  on the interval  [ 5 , \infty )  ;  Absolute minimum is  - 9  on the interval  ( - \infty , 4 ]

D) Absolute maximum is 9
on the interval [5,) [ 5 , \infty ) ;
Absolute minimum is 9- 9
on the interval (,4]( - \infty , 4 ]
 Graph the function, then find the extreme values of the function on the interval and indicate where they occur. - y = | x + 4 | - | x - 5 |  on the interval  - \infty < x < \infty     A)  Absolute maximum is 9 on the interval  [ 6 , \infty )  ; Absolute minimum is  - 9   on the interval  ( - \infty , 3 ]     B)  Absolute maximum is 10   on the interval  [ 5 , \infty )  ;  Absolute minimum is  - 10    on the interval  ( - \infty , 4 ]     C)  Absolute maximum is 8  on the interval  [ 5 , \infty)  ; Absolute minimum is  \mathbf { - 8 } .  on the interval  ( - \infty , 4 ]      D)  Absolute maximum is 9  on the interval  [ 5 , \infty )  ;  Absolute minimum is  - 9  on the interval  ( - \infty , 4 ]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions