Solved

Graph the Equation y=x1/3(x263)y=x^{1 / 3}\left(x^{2}-63\right) A) No Extrema
Inflection Point (0,0)( 0,0 )

Question 298

Multiple Choice

Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points.
- y=x1/3(x263) y=x^{1 / 3}\left(x^{2}-63\right)
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y=x^{1 / 3}\left(x^{2}-63\right)     A)  no extrema inflection point:  ( 0,0 )      B)  local minimum:  \left( \pm \sqrt { 27 } , - \frac { 27 } { 2 } \right)    local maximum:   (0,0)    inflection points:   (\pm 3,-5)       C)  local minimum:   (3,-54 \sqrt[3]{3})    local maximum:   (-3,54 \sqrt[3]{3})    inflection point:   (0,0)       D)  local minimum:   (0,0)     no inflection points


A) no extrema
inflection point: (0,0) ( 0,0 )
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y=x^{1 / 3}\left(x^{2}-63\right)     A)  no extrema inflection point:  ( 0,0 )      B)  local minimum:  \left( \pm \sqrt { 27 } , - \frac { 27 } { 2 } \right)    local maximum:   (0,0)    inflection points:   (\pm 3,-5)       C)  local minimum:   (3,-54 \sqrt[3]{3})    local maximum:   (-3,54 \sqrt[3]{3})    inflection point:   (0,0)       D)  local minimum:   (0,0)     no inflection points

B) local minimum: (±27,272) \left( \pm \sqrt { 27 } , - \frac { 27 } { 2 } \right)
local maximum: (0,0) (0,0)
inflection points: (±3,5) (\pm 3,-5)
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y=x^{1 / 3}\left(x^{2}-63\right)     A)  no extrema inflection point:  ( 0,0 )      B)  local minimum:  \left( \pm \sqrt { 27 } , - \frac { 27 } { 2 } \right)    local maximum:   (0,0)    inflection points:   (\pm 3,-5)       C)  local minimum:   (3,-54 \sqrt[3]{3})    local maximum:   (-3,54 \sqrt[3]{3})    inflection point:   (0,0)       D)  local minimum:   (0,0)     no inflection points

C)
local minimum: (3,5433) (3,-54 \sqrt[3]{3})
local maximum: (3,5433) (-3,54 \sqrt[3]{3})
inflection point: (0,0) (0,0)
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y=x^{1 / 3}\left(x^{2}-63\right)     A)  no extrema inflection point:  ( 0,0 )      B)  local minimum:  \left( \pm \sqrt { 27 } , - \frac { 27 } { 2 } \right)    local maximum:   (0,0)    inflection points:   (\pm 3,-5)       C)  local minimum:   (3,-54 \sqrt[3]{3})    local maximum:   (-3,54 \sqrt[3]{3})    inflection point:   (0,0)       D)  local minimum:   (0,0)     no inflection points

D)
local minimum: (0,0) (0,0)
no inflection points
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y=x^{1 / 3}\left(x^{2}-63\right)     A)  no extrema inflection point:  ( 0,0 )      B)  local minimum:  \left( \pm \sqrt { 27 } , - \frac { 27 } { 2 } \right)    local maximum:   (0,0)    inflection points:   (\pm 3,-5)       C)  local minimum:   (3,-54 \sqrt[3]{3})    local maximum:   (-3,54 \sqrt[3]{3})    inflection point:   (0,0)       D)  local minimum:   (0,0)     no inflection points

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions