Solved

Graph the Equation y=x2x2+13y = \frac { x ^ { 2 } } { x ^ { 2 } + 13 }

Question 301

Multiple Choice

Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points.
- y=x2x2+13y = \frac { x ^ { 2 } } { x ^ { 2 } + 13 }
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y = \frac { x ^ { 2 } } { x ^ { 2 } + 13 }      A)  local minimum:  \left( 0 , \frac { 1 } { 13 } \right)   no inflection points     B)  local minimum:  ( 0,0 )   no inflection points   C)  local minimum:   (0,0)    inflection points:   \left(-\frac{\sqrt{39}}{3}, \frac{1}{4}\right) ,\left(\frac{\sqrt{39}}{3}, \frac{1}{4}\right)        D) _local minimum:   \left(0,-\frac{1}{13}\right)     no inflection points


A) local minimum: (0,113) \left( 0 , \frac { 1 } { 13 } \right)
no inflection points
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y = \frac { x ^ { 2 } } { x ^ { 2 } + 13 }      A)  local minimum:  \left( 0 , \frac { 1 } { 13 } \right)   no inflection points     B)  local minimum:  ( 0,0 )   no inflection points   C)  local minimum:   (0,0)    inflection points:   \left(-\frac{\sqrt{39}}{3}, \frac{1}{4}\right) ,\left(\frac{\sqrt{39}}{3}, \frac{1}{4}\right)        D) _local minimum:   \left(0,-\frac{1}{13}\right)     no inflection points

B) local minimum: (0,0) ( 0,0 )
no inflection points
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y = \frac { x ^ { 2 } } { x ^ { 2 } + 13 }      A)  local minimum:  \left( 0 , \frac { 1 } { 13 } \right)   no inflection points     B)  local minimum:  ( 0,0 )   no inflection points   C)  local minimum:   (0,0)    inflection points:   \left(-\frac{\sqrt{39}}{3}, \frac{1}{4}\right) ,\left(\frac{\sqrt{39}}{3}, \frac{1}{4}\right)        D) _local minimum:   \left(0,-\frac{1}{13}\right)     no inflection points
C) local minimum: (0,0) (0,0)
inflection points: (393,14) ,(393,14) \left(-\frac{\sqrt{39}}{3}, \frac{1}{4}\right) ,\left(\frac{\sqrt{39}}{3}, \frac{1}{4}\right)

 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y = \frac { x ^ { 2 } } { x ^ { 2 } + 13 }      A)  local minimum:  \left( 0 , \frac { 1 } { 13 } \right)   no inflection points     B)  local minimum:  ( 0,0 )   no inflection points   C)  local minimum:   (0,0)    inflection points:   \left(-\frac{\sqrt{39}}{3}, \frac{1}{4}\right) ,\left(\frac{\sqrt{39}}{3}, \frac{1}{4}\right)        D) _local minimum:   \left(0,-\frac{1}{13}\right)     no inflection points

D) _local minimum: (0,113) \left(0,-\frac{1}{13}\right)
no inflection points
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y = \frac { x ^ { 2 } } { x ^ { 2 } + 13 }      A)  local minimum:  \left( 0 , \frac { 1 } { 13 } \right)   no inflection points     B)  local minimum:  ( 0,0 )   no inflection points   C)  local minimum:   (0,0)    inflection points:   \left(-\frac{\sqrt{39}}{3}, \frac{1}{4}\right) ,\left(\frac{\sqrt{39}}{3}, \frac{1}{4}\right)        D) _local minimum:   \left(0,-\frac{1}{13}\right)     no inflection points

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions