Solved

Solve the Initial Value Problem dydx=1x3+x,x>0;y(1)=2\frac { d y } { d x } = \frac { 1 } { x ^ { 3 } } + x , x > 0 ; y ( 1 ) = 2

Question 259

Multiple Choice

Solve the initial value problem.
- dydx=1x3+x,x>0;y(1) =2\frac { d y } { d x } = \frac { 1 } { x ^ { 3 } } + x , x > 0 ; y ( 1 ) = 2


A) y=4x4+x2252y = \frac { 4 } { x ^ { 4 } } + \frac { x ^ { 2 } } { 2 } - \frac { 5 } { 2 }
B) y=12x2+x22y = \frac { - 1 } { 2 x ^ { 2 } } + \frac { x ^ { 2 } } { 2 }
C) y=12x2+x22+2y = - \frac { 1 } { 2 x ^ { 2 } } + \frac { x ^ { 2 } } { 2 } + 2
D) y=12x2+52y = - \frac { 1 } { 2 x ^ { 2 } } + \frac { 5 } { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions