Solved

Answer Each Question Appropriately gg (Length-Units) sec2\mathrm { sec } ^ { 2 }

Question 405

Multiple Choice

Answer each question appropriately.
-The position of an object in free fall near the surface of the plane where the acceleration due to gravity has a constant magnitude of gg (length-units) / sec2\mathrm { sec } ^ { 2 } is given by the equation:
s=12gt2+v0t+s0\mathrm { s } = - \frac { 1 } { 2 } \mathrm { gt } ^ { 2 } + \mathrm { v } _ { 0 } \mathrm { t } + \mathrm { s } _ { 0 } , where s\mathrm { s } is the height above the earth, v0\mathrm { v } _ { 0 } is the initial velocity, and s0\mathrm { s } _ { 0 } is the initial height. Give the initial value problem for this situation. Solve it to check its validity. Remember the positive direction is the upward direction.


A) d2 sdt2=g, s(0) =v0, s(0) =s0\frac { \mathrm { d } ^ { 2 } \mathrm {~s} } { \mathrm { dt } { } ^ { 2 } } = - g , \mathrm {~s} ^ { \prime } ( 0 ) = \mathrm { v } _ { 0 } , \quad \mathrm {~s} ( 0 ) = \mathrm { s } 0
B) d2 sdt2=gt,s(0) =s0\frac { \mathrm { d } ^ { 2 } \mathrm {~s} } { d \mathrm { t } ^ { 2 } } = - g \mathrm { t } , \mathrm { s } ( 0 ) = \mathrm { s } 0
C) d2 sdt2=g,s(0) =v0, s(0) =s0\frac { \mathrm { d } ^ { 2 } \mathrm {~s} } { \mathrm { dt } ^ { 2 } } = \mathrm { g } , \mathrm { s } ^ { \prime } ( 0 ) = \mathrm { v } _ { 0 } , \quad \mathrm {~s} ( 0 ) = \mathrm { s } 0
D) d2 sdt2=g\frac { \mathrm { d } ^ { 2 } \mathrm {~s} } { \mathrm { dt } ^ { 2 } } = - \mathrm { g }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions