Solved

Find the Extreme Values of the Function and Where They y=x2ex+2xexy = x ^ { 2 } e ^ { - x } + 2 x e ^ { - x }

Question 402

Multiple Choice

Find the extreme values of the function and where they occur.
- y=x2ex+2xexy = x ^ { 2 } e ^ { - x } + 2 x e ^ { - x }


A) Maximum value is 2e2(1+2) 2 \mathrm { e } ^ { - \sqrt { 2 } } ( 1 + \sqrt { 2 } ) at x=\mathrm { x } = ; no minimum value.
B) Minimum value is 2e2(12) 2 e ^ { \sqrt { 2 } } ( 1 - \sqrt { 2 } ) at x=2x = - \sqrt { 2 } ; maximum value is 2e2(1+2) 2 e ^ { - \sqrt { 2 } } ( 1 + \sqrt { 2 } ) at x=2x = \sqrt { 2 } .
C) Minimum value is 2e2(12) 2 e ^ { \sqrt { 2 } } ( 1 - \sqrt { 2 } ) at x=2x = - \sqrt { 2 } ; no maximum value.
D) None

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions