Solved

Compare the Right-Hand and Left-Hand Derivatives to Determine Whether or Not

Question 269

Multiple Choice

Compare the right-hand and left-hand derivatives to determine whether or not the function is differentiable at the point
whose coordinates are given.
- Compare the right-hand and left-hand derivatives to determine whether or not the function is differentiable at the point whose coordinates are given. -   y = x   y = 2 x  A)  Since  \lim _ { x - \theta ^ { + } } f ^ { \prime } ( x )  = 1  while  \lim _ { x \rightarrow \theta ^ { - } } f ^ { \prime } ( x )  = 2 , f ( x )   is not differentiable at  x = 0 . B)  Since  \lim _ { x \rightarrow \theta ^ { + } } f ^ { \prime } ( x )  = 2  while  \lim _ { x \rightarrow \theta ^ { - } } f ^ { \prime } ( x )  = 1 , f ( x )   is not differentiable at  x = 0 . C)  Since  \lim _ { x - \theta ^ { + } } f ^ { \prime } ( x )  = - 2  while  \lim _ { x - \theta ^ { - } } f ^ { \prime } ( x )  = - 1 , f ( x )   is not differentiable at  x = 0 . D)  Since  \lim _ { x \rightarrow \theta ^ { + } } f ^ { \prime } ( x )  = 1  while  \lim _ { x - \theta ^ { - } } f ^ { \prime } ( x )  = 1 , f ( x )   is differentiable at  x = 0 .
y=xy = x y=2xy = 2 x


A) Since limxθ+f(x) =1\lim _ { x - \theta ^ { + } } f ^ { \prime } ( x ) = 1 while limxθf(x) =2,f(x) \lim _ { x \rightarrow \theta ^ { - } } f ^ { \prime } ( x ) = 2 , f ( x ) is not differentiable at x=0x = 0 .
B) Since limxθ+f(x) =2\lim _ { x \rightarrow \theta ^ { + } } f ^ { \prime } ( x ) = 2 while limxθf(x) =1,f(x) \lim _ { x \rightarrow \theta ^ { - } } f ^ { \prime } ( x ) = 1 , f ( x ) is not differentiable at x=0x = 0 .
C) Since limxθ+f(x) =2\lim _ { x - \theta ^ { + } } f ^ { \prime } ( x ) = - 2 while limxθf(x) =1,f(x) \lim _ { x - \theta ^ { - } } f ^ { \prime } ( x ) = - 1 , f ( x ) is not differentiable at x=0x = 0 .
D) Since limxθ+f(x) =1\lim _ { x \rightarrow \theta ^ { + } } f ^ { \prime } ( x ) = 1 while limxθf(x) =1,f(x) \lim _ { x - \theta ^ { - } } f ^ { \prime } ( x ) = 1 , f ( x ) is differentiable at x=0x = 0 .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions