Solved

Solve the Problem e=QhQCQh\mathrm { e } = \frac { \mathrm { Q } _ { \mathrm { h } } - \mathrm { Q } _ { \mathrm { C } } } { \mathrm { Q } _ { \mathrm { h } } } \text {, }

Question 286

Multiple Choice

Solve the problem.
-A heat engine is a device that converts thermal energy into other forms. The thermal efficiency, e, of a heat engin defined by
e=QhQCQh\mathrm { e } = \frac { \mathrm { Q } _ { \mathrm { h } } - \mathrm { Q } _ { \mathrm { C } } } { \mathrm { Q } _ { \mathrm { h } } } \text {, }
where Qh\mathrm { Q } _ { h } is the heat absorbed in one cycle and QC\mathrm { Q } _ { \mathrm { C } } , the heat released into a reservoir in one cycle, is a constant. Find d2edh2\frac { d ^ { 2 } e } { d h ^ { 2 } }


A) d2edQh2=QCQh2\frac { \mathrm { d } ^ { 2 } \mathrm { e } } { \mathrm { dQ } _ { \mathrm { h } ^ { 2 } } } = \frac { \mathrm { Q } _ { \mathrm { C } } } { \mathrm { Q } _ { \mathrm { h } ^ { 2 } } }
B) d2edQh2=2QCQh3\frac { d ^ { 2 } e } { d Q _ { h } ^ { 2 } } = \frac { - 2 Q _ { C } } { Q _ { h } { } ^ { 3 } }
C) d2edh22=QcQh3\frac { d ^ { 2 } e } { d _ { h ^ { 2 } } ^ { 2 } } = \frac { Q _ { c } } { Q _ { h ^ { 3 } } }
D) d2edQh2=QC2Qh2\frac { \mathrm { d } ^ { 2 } \mathrm { e } } { \mathrm { dQ } _ { \mathrm { h } } ^ { 2 } } = \frac { - \mathrm { Q } _ { \mathrm { C } } } { 2 \mathrm { Qh } ^ { 2 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions