Solved

Solve the Problem s=Asin(kmt)s = A \sin \left( \sqrt { \frac { \mathrm { k } } { \mathrm { m } } } \mathrm { t } \right)

Question 283

Multiple Choice

Solve the problem.
-The position (in centimeters) of an object oscillating up and down at the end of a spring is given by s=Asin(kmt) s = A \sin \left( \sqrt { \frac { \mathrm { k } } { \mathrm { m } } } \mathrm { t } \right) at time t\mathrm { t } (in seconds) . The value of A\mathrm { A } is the amplitude of the motion, k\mathrm { k } is a measure of the stiffness of the spring, and mm is the mass of the object. Find the object's acceleration at time tt .


A) a=Asin(kmt) cm/sec2 a = - A \sin \left( \sqrt { \frac { k } { m } } t \right) \mathrm { cm } / \sec ^ { 2 }
B) a=Akmsin(kmt) cm/sec2a = - A \sqrt { \frac { \mathrm { k } } { \mathrm { m } } } \sin \left( \sqrt { \frac { \mathrm { k } } { \mathrm { m } } } \mathrm { t } \right) \mathrm { cm } / \mathrm { sec } ^ { 2 }
C) a=Akmcos(kmt) cm/sec2 a = \frac { A k } { m } \cos \left( \sqrt { \frac { k } { m } } t \right) c m / \sec ^ { 2 }
D) a=Akmsin(kmt) cm/sec2a = - \frac { A k } { m } \sin \left( \sqrt { \frac { k } { m } } t \right) \mathrm { cm } / \mathrm { sec } ^ { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions