Solved

Find the Derivative r=20θ4cosθr = 20 - \theta ^ { 4 } \cos \theta

Question 374

Multiple Choice

Find the derivative.
- r=20θ4cosθr = 20 - \theta ^ { 4 } \cos \theta


A) drdθ=4θ3sinθθ4cosθ\frac { \mathrm { dr } } { \mathrm { d } \theta } = 4 \theta ^ { 3 } \sin \theta - \theta ^ { 4 } \cos \theta
B) drdθ=4θ3sinθ\frac { \mathrm { dr } } { \mathrm { d } \theta } = 4 \theta ^ { 3 } \sin \theta
C) drdθ=4θ3cosθθ4sinθ\frac { \mathrm { dr } } { \mathrm { d } \theta } = 4 \theta ^ { 3 } \cos \theta - \theta ^ { 4 } \sin \theta
D) drdθ=4θ3cosθ+θ4sinθ\frac { \mathrm { dr } } { \mathrm { d } \theta } = - 4 \theta ^ { 3 } \cos \theta + \theta ^ { 4 } \sin \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions