Solved

Use the Table of Values of F to Estimate the Limit

Question 316

Multiple Choice

Use the table of values of f to estimate the limit.
-  Let f(x) =x2x26x+8, find limx2f(x) \text { Let } f(x) =\frac{x-2}{x^{2}-6 x+8} \text {, find } \lim _{x \rightarrow 2} f(x)
x1.91.991.9992.0012.012.1f(x) \begin{array}{c|l|l|l|l|l|l}\mathrm{x} & 1.9 & 1.99 & 1.999 & 2.001 & 2.01 & 2.1 \\\hline \mathrm{f}(\mathrm{x}) & & & & & &\end{array}


A)
x1.91.991.9992.0012.012.1f(x) 0.37620.39750.39980.40030.40250.4263; limit =0.4\begin{array}{c|cccccc}\mathrm{x} & 1.9 & 1.99 & 1.999 & 2.001 & 2.01 & 2.1 \\\hline \mathrm{f}(\mathrm{x}) & -0.3762 & -0.3975 & -0.3998 & -0.4003 & -0.4025 & -0.4263\end{array} \text {; limit }=-0.4

B)
x1.91.991.9992.0012.012.1f(x) 0.47620.49750.49980.50030.50250.5263; limit =0.5\begin{array}{c|cccccc}\mathrm{x} & 1.9 & 1.99 & 1.999 & 2.001 & 2.01 & 2.1 \\\hline \mathrm{f}(\mathrm{x}) & 0.4762 & 0.4975 & 0.4998 & 0.5003 & 0.5025 & 0.5263\end{array} \text {; limit }=0.5

C)
x1.91.991.9992.0012.012.1f(x) 0.47620.49750.49980.50030.50250.5263 limit =0.5\begin{array}{c|cccccc}\mathrm{x} & 1.9 & 1.99 & 1.999 & 2.001 & 2.01 & 2.1 \\\hline \mathrm{f}(\mathrm{x}) & -0.4762 & -0.4975 & -0.4998 & -0.5003 & -0.5025 & -0.5263\end{array} \text { limit }=-0.5


D)

x1.91.991.9992.0012.012.1f(x) 0.57620.59750.59980.60030.60250.6263; limit =0.6\begin{array}{c|cccccc}\mathrm{x} & 1.9 & 1.99 & 1.999 & 2.001 & 2.01 & 2.1 \\\hline \mathrm{f}(\mathrm{x}) & -0.5762 & -0.5975 & -0.5998 & -0.6003 & -0.6025 & -0.6263\end{array} ; \text { limit }=-0.6

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions