Solved

A Function f(x)\mathrm { f } ( \mathrm { x } )

Question 188

Multiple Choice

A function f(x) \mathrm { f } ( \mathrm { x } ) , a point c\mathrm { c } , the limit of f(x) \mathrm { f } ( \mathrm { x } ) as xx approaches c\mathrm { c } , and a positive number ε\varepsilon is given. Find a number δ>0\delta > 0 such that for all x,0<xc<δf(x) L<εx , 0 < | \mathrm { x } - \mathrm { c } | < \delta \Rightarrow | \mathrm { f } ( \mathrm { x } ) - \mathrm { L } | < \varepsilon .
- f(x) =1x,L=12,c=2\mathrm { f } ( \mathrm { x } ) = \frac { 1 } { \mathrm { x } } , \mathrm { L } = \frac { 1 } { 2 } , \mathrm { c } = 2 , and ε=0.3\varepsilon = 0.3


A) δ=0.75\delta = 0.75
B) δ=0.375\delta = 0.375
C) δ=3\delta = 3
D) δ=10\delta = 10

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions