Solved

A Function f(x)\mathrm { f } ( \mathrm { x } )

Question 191

Multiple Choice

A function f(x) \mathrm { f } ( \mathrm { x } ) , a point c\mathrm { c } , the limit of f(x) \mathrm { f } ( \mathrm { x } ) as xx approaches c\mathrm { c } , and a positive number ε\varepsilon is given. Find a number δ>0\delta > 0 such that for all x,0<xc<δf(x) L<εx , 0 < | \mathrm { x } - \mathrm { c } | < \delta \Rightarrow | \mathrm { f } ( \mathrm { x } ) - \mathrm { L } | < \varepsilon .
- f(x) =583x,c=2,ε=0.2f ( x ) = \sqrt { 58 - 3 x } , c = - 2 , \varepsilon = 0.2


A) L=8;δ=1.08L = 8 ; \delta = 1.08
B) L=9;δ=1.05L = 9 ; \delta = 1.05
C) L=j7;δ=0.52L = j - 7 ; \delta = 0.52
D) L=8;δ=1.05\mathrm { L } = 8 ; \delta = 1.05

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions