Solved

A Function f(x)\mathrm { f } ( \mathrm { x } )

Question 265

Multiple Choice

A function f(x) \mathrm { f } ( \mathrm { x } ) , a point c\mathrm { c } , the limit of f(x) \mathrm { f } ( \mathrm { x } ) as xx approaches c\mathrm { c } , and a positive number ε\varepsilon is given. Find a number δ>0\delta > 0 such that for all x,0<xc<δf(x) L<εx , 0 < | \mathrm { x } - \mathrm { c } | < \delta \Rightarrow | \mathrm { f } ( \mathrm { x } ) - \mathrm { L } | < \varepsilon .
- f(x) =mx,m>0,L=4m,c=4f ( x ) = m x , m > 0 , L = 4 m , c = 4 , and ε=0.05\varepsilon = 0.05


A) δ=4+0.05m\delta = 4 + \frac { 0.05 } { m }
B) δ=4m\delta = 4 - \mathrm { m }
C) δ=0.05\delta = 0.05
D) δ=0.05m\delta = \frac { 0.05 } { m }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions