Solved

Provide an Appropriate Response ε>0\varepsilon > 0 , Find an Interval I=(1,1+δ),δ>0I = ( 1,1 + \delta ) , \delta > 0

Question 231

Multiple Choice

Provide an appropriate response.
-Given ε>0\varepsilon > 0 , find an interval I=(1,1+δ) ,δ>0I = ( 1,1 + \delta ) , \delta > 0 , such that if xx lies in I\mathrm { I } , then x1<ε\sqrt { x - 1 } < \varepsilon . What limit is being verified and what is its value?


A) limxz+x=1\lim _ { x \rightarrow \mathbf { z } ^ { + } } \sqrt { x } = 1
B) limxθx1=0\lim _ { x \rightarrow \theta ^ { - } } \sqrt { x - 1 } = 0
C) limxz+x1=0\lim _ { x - \mathbf { z } ^ { + } } \sqrt { x - 1 } = 0
D) limx3x1=0\lim _ { x \rightarrow 3 ^ { - } } \sqrt { x - 1 } = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions