Solved

Answer the Question limx1+f(x)=f(1)?\lim _ { x \rightarrow 1 ^ { + } } f ( x ) = f ( - 1 ) ?

Question 295

True/False

Answer the question.
-Does limx1+f(x)=f(1)?\lim _ { x \rightarrow 1 ^ { + } } f ( x ) = f ( - 1 ) ?
f(x)={x2+1,1x<02x,0<x<14,x=12x+41<x<33,3<x<5\mathrm { f } ( \mathrm { x } ) = \left\{ \begin{array} { l l } - \mathrm { x } ^ { 2 } + 1 , & - 1 \leq \mathrm { x } < 0 \\2 \mathrm { x } , & 0 < \mathrm { x } < 1 \\- 4 , & \mathrm { x } = 1 \\- 2 \mathrm { x } + 4 & 1 < \mathrm { x } < 3 \\3 , & 3 < \mathrm { x } < 5\end{array} \right.
 Answer the question. -Does  \lim _ { x \rightarrow 1 ^ { + } } f ( x ) = f ( - 1 ) ?   \mathrm { f } ( \mathrm { x } ) = \left\{ \begin{array} { l l }  - \mathrm { x } ^ { 2 } + 1 , & - 1 \leq \mathrm { x } < 0 \\ 2 \mathrm { x } , & 0 < \mathrm { x } < 1 \\ - 4 , & \mathrm { x } = 1 \\ - 2 \mathrm { x } + 4 & 1 < \mathrm { x } < 3 \\ 3 , & 3 < \mathrm { x } < 5 \end{array} \right.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions