Solved

Evaluate the Line Integral Along the Curve C C(y+z)ds,C\int _ { C } ( y + z ) d s , C

Question 3

Multiple Choice

Evaluate the line integral along the curve C.
- C(y+z) ds,C\int _ { C } ( y + z ) d s , C is the path from (0,0,0) ( 0,0,0 ) to (6,6,1) ( 6 , - 6,1 ) given by:
C1:r(t) =6t2i6tj,0t1C _ { 1 } : r ( t ) = 6 t ^ { 2 } i - 6 t j , 0 \leq t \leq 1
C2:r(t) =6i6j+(t1) k,1t2C _ { 2 } : \mathbf { r } ( \mathrm { t } ) = 6 \mathbf { i } - 6 \mathbf { j } + ( t - 1 ) \mathbf { k } , 1 \leq \mathrm { t } \leq 2


A) 155+52- 15 \sqrt { 5 } + \frac { 5 } { 2 }
B) 5912- \frac { 59 } { 12 }
C) 832- \frac { 83 } { 2 }
D) 15552- 15 \sqrt { 5 } - \frac { 5 } { 2 }

Correct Answer:

verifed

Verified

Related Questions