Solved

Using Green's Theorem, Compute the Counterclockwise Circulation of F Around

Question 6

Multiple Choice

Using Green's Theorem, compute the counterclockwise circulation of F around the closed curve C.
- F=(yeycosx) i+(yeysinx) j;C\mathbf { F } = \left( - \mathrm { y } - \mathrm { e } ^ { \mathrm { y } } \cos \mathrm { x } \right) \mathbf { i } + \left( \mathrm { y } - \mathrm { e } ^ { \mathrm { y } } \sin \mathrm { x } \right) \mathrm { j } ; \mathrm { C } is the right lobe of the lemniscate r2=cos2θ\mathrm { r } ^ { 2 } = \cos 2 \theta that lies in the first quadrant.


A) 14\frac { 1 } { 4 }
B) 1
C) 0
D) 12\frac { 1 } { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions