Solved

Evaluate the Line Integral Along the Curve C C(xy+yz)ds,C\int _ { C } ( x y + y z ) d s , C

Question 192

Multiple Choice

Evaluate the line integral along the curve C.
- C(xy+yz) ds,C\int _ { C } ( x y + y z ) d s , C is the path from (1,1,0) ( 1,1,0 ) to (e2,e2,1) \left( e ^ { 2 } , e ^ { 2 } , 1 \right) given by:
C1:r(t) =e2ti+e2tj,0t1C _ { 1 } : \mathbf { r } ( \mathrm { t } ) = \mathrm { e } ^ { 2 } \mathrm { t } _ { \mathbf { i } } + \mathrm { e } ^ { 2 } \mathrm { t } \mathbf { j } , 0 \leq \mathrm { t } \leq 1
C2:r(t) =e2i+e2j+9tk,0t1C _ { 2 } : \mathbf { r } ( \mathrm { t } ) = \mathrm { e } ^ { 2 } \mathbf { i } + \mathrm { e } ^ { 2 } \mathbf { j } + 9 \mathrm { t } \mathbf { k } , 0 \leq \mathrm { t } \leq 1


A) 23(e61) \frac { \sqrt { 2 } } { 3 } \left( e ^ { 6 } - 1 \right)
B) 23(e61) +9e4+81e2\frac { \sqrt { 2 } } { 3 } \left( e ^ { 6 } - 1 \right) + 9 e ^ { 4 } + 81 e ^ { 2 }
C) 23(e61) +9e4+812e2\frac { \sqrt { 2 } } { 3 } \left( e ^ { 6 } - 1 \right) + 9 e ^ { 4 } + \frac { 81 } { 2 } e ^ { 2 }
D) 23(e61) +e4+12e2\frac { \sqrt { 2 } } { 3 } \left( e ^ { 6 } - 1 \right) + e ^ { 4 } + \frac { 1 } { 2 } e ^ { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions