Services
Discover
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Mathematics
Study Set
Thomas Calculus Early Transcendentals
Exam 16: Multiple Integrals
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Practice Exam
Learn
Question 241
Multiple Choice
Find the volume of the indicated region. -the region bounded below by the
x
y
x y
x
y
-plane, laterally by the cylinder
r
=
4
cos
θ
r = 4 \cos \theta
r
=
4
cos
θ
, and above by the plane
z
=
3
z = 3
z
=
3
Question 242
Multiple Choice
Find the volume of the indicated region. -
the tetrahedron bounded by the coordinate planes and the plane
x
9
+
y
8
+
z
10
=
1
\text { the tetrahedron bounded by the coordinate planes and the plane } \frac { x } { 9 } + \frac { y } { 8 } + \frac { z } { 10 } = 1
the tetrahedron bounded by the coordinate planes and the plane
9
x
+
8
y
+
10
z
=
1
Question 243
Multiple Choice
Use the given transformation to evaluate the integral. -
x
=
6
u
,
y
=
9
v
,
z
=
2
w
;
∭
(
x
2
36
+
y
2
81
+
z
2
4
)
3
d
x
d
y
\begin{array} { l } x = 6 u , y = 9 \mathrm { v } , z = 2 w ; \\\quad \iiint \left( \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 81 } + \frac { z ^ { 2 } } { 4 } \right) ^ { 3 } d x d y\end{array}
x
=
6
u
,
y
=
9
v
,
z
=
2
w
;
∭
(
36
x
2
+
81
y
2
+
4
z
2
)
3
d
x
d
y
where
R
R
R
is the interior of the ellipsoid
x
2
36
+
y
2
81
+
z
2
4
=
1
\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 81 } + \frac { z ^ { 2 } } { 4 } = 1
36
x
2
+
81
y
2
+
4
z
2
=
1
Question 244
Multiple Choice
Evaluate the integral by changing the order of integration in an appropriate way. -
∫
0
10
∫
1
2
∫
x
/
10
1
e
y
3
z
d
y
d
z
d
x
\int _ { 0 } ^ { 10 } \int _ { 1 } ^ { 2 } \int _ { \sqrt { x / 10 } } ^ { 1 } \frac { e ^ { y ^ { 3 } } } { z } d y d z d x
∫
0
10
∫
1
2
∫
x
/10
1
z
e
y
3
d
y
d
z
d
x
Question 245
Multiple Choice
Evaluate the integral. -
∫
0
1
∫
0
1
(
9
x
−
8
y
)
d
y
d
x
\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 1 } ( 9 x - 8 y ) d y d x
∫
0
1
∫
0
1
(
9
x
−
8
y
)
d
y
d
x
Question 246
Multiple Choice
Set up the iterated integral for evaluating
∬
D
∫
f
(
r
,
θ
,
z
)
d
z
r
d
r
d
θ
over the given region D.
\text { Set up the iterated integral for evaluating } \iint _ { D } \int f ( r , \theta , z ) d z r d r d \theta \text { over the given region D. }
Set up the iterated integral for evaluating
∬
D
∫
f
(
r
,
θ
,
z
)
d
zr
d
r
d
θ
over the given region D.
-
D
\mathrm { D }
D
is the right circular cylinder whose base is the circle
r
=
6
cos
θ
\mathrm { r } = 6 \cos \theta
r
=
6
cos
θ
in the
x
y
−
p
l
a
n
e
x y - p l a n e
x
y
−
pl
an
e
and whose top lies in the plane
z
=
8
−
x
−
y
z = 8 - x - y
z
=
8
−
x
−
y
.
Question 247
Multiple Choice
Evaluate the improper integral. -
∫
0
∞
∫
0
∞
d
x
d
y
(
x
+
3
)
2
(
y
+
10
)
2
\int _ { 0 } ^ { \infty } \int _ { 0 } ^ { \infty } \frac { d x d y } { ( x + 3 ) ^ { 2 } ( y + 10 ) ^ { 2 } }
∫
0
∞
∫
0
∞
(
x
+
3
)
2
(
y
+
10
)
2
d
x
d
y
Question 248
Multiple Choice
Change the Cartesian integral to an equivalent polar integral, and then evaluate. -
∫
−
3
3
∫
−
9
−
x
2
9
−
x
2
1
(
1
+
x
2
+
y
2
)
2
d
y
d
x
\int _ { - 3 } ^ { 3 } \int _ { - \sqrt { 9 - x ^ { 2 } } } ^ { \sqrt { 9 - x ^ { 2 } } } \frac { 1 } { \left( 1 + x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } } d y d x
∫
−
3
3
∫
−
9
−
x
2
9
−
x
2
(
1
+
x
2
+
y
2
)
2
1
d
y
d
x
Question 249
Multiple Choice
Evaluate the integral. -
∫
0
ln
6
∫
e
y
6
e
y
d
x
d
y
\int _ { 0 } ^ { \ln 6 } \int _ { e ^ { y } } ^ { 6 } e ^ { y } d x d y
∫
0
l
n
6
∫
e
y
6
e
y
d
x
d
y
Question 250
Multiple Choice
Find the average value of F(x, y, z) over the given region. -F(x, y, z) = 9x + 10y + 3z over the rectangular solid in the first octant bounded by the coordinate planes and the planes x = 4, y = 7, z = 6
Question 251
Multiple Choice
Change the Cartesian integral to an equivalent polar integral, and then evaluate. -
∫
−
3
3
∫
−
9
−
y
2
0
x
2
+
y
2
1
+
x
2
+
y
2
d
x
d
y
\int _ { - 3 } ^ { 3 } \int _ { - \sqrt { 9 - y ^ { 2 } } } ^ { 0 } \frac { \sqrt { x ^ { 2 } + y ^ { 2 } } } { 1 + \sqrt { x ^ { 2 } + y ^ { 2 } } } d x d y
∫
−
3
3
∫
−
9
−
y
2
0
1
+
x
2
+
y
2
x
2
+
y
2
d
x
d
y
Question 252
Multiple Choice
Evaluate the integral. -
∫
0
2
∫
0
8
(
x
+
y
)
d
x
d
y
\int _ { 0 } ^ { 2 } \int _ { 0 } ^ { 8 } ( x + y ) d x d y
∫
0
2
∫
0
8
(
x
+
y
)
d
x
d
y
Question 253
Multiple Choice
Solve the problem. -Find the mass of a thin circular plate bounded by
x
2
+
y
2
=
4
x ^ { 2 } + y ^ { 2 } = 4
x
2
+
y
2
=
4
if
δ
(
x
,
y
)
=
x
2
+
y
2
\delta ( x , y ) = x ^ { 2 } + y ^ { 2 }
δ
(
x
,
y
)
=
x
2
+
y
2
.
Question 254
Multiple Choice
Find the volume of the indicated region. -the region under the surface
z
=
x
2
+
y
4
z = x ^ { 2 } + y ^ { 4 }
z
=
x
2
+
y
4
, and bounded by the planes
x
=
0
x = 0
x
=
0
and
y
=
16
y = 16
y
=
16
and the cylinder
y
=
x
2
y = x ^ { 2 }
y
=
x
2
Question 255
Multiple Choice
Use a spherical coordinate integral to find the volume of the given solid. -the solid between the spheres
ϱ
=
cos
φ
\varrho = \cos \varphi
ϱ
=
cos
φ
and
ϱ
=
6
\varrho = 6
ϱ
=
6
Question 256
Multiple Choice
Solve the problem. -Find the centroid of the region cut from the first quadrant by the line
x
+
y
=
4
x + y = 4
x
+
y
=
4
.
Question 257
Multiple Choice
Find the average value of the function f over the given region. -
f
(
x
,
y
)
=
e
10
x
\mathrm { f } ( \mathrm { x } , \mathrm { y } ) = \mathrm { e } ^ { 10 \mathrm { x } }
f
(
x
,
y
)
=
e
10
x
over the square
0
≤
x
≤
1
10
,
0
≤
y
≤
1
10
0 \leq \mathrm { x } \leq \frac { 1 } { 10 } , 0 \leq \mathrm { y } \leq \frac { 1 } { 10 }
0
≤
x
≤
10
1
,
0
≤
y
≤
10
1
.
Question 258
Multiple Choice
Use a CAS integration utility to evaluate the triple integral of the given function over the specified solid region. -F(x, y, z) = 9x + 8y + 10z over the tetrahedron bounded by the coordinate planes and the plane x + y + z = 1