Solved

Solve the Problem dzdydx\mathrm { dz } \mathrm { dy } \mathrm {} \mathrm { dx }

Question 322

Multiple Choice

Solve the problem.
-Write an iterated triple integral in the order dzdydx\mathrm { dz } \mathrm { dy } \mathrm {} \mathrm { dx } for the volume of the tetrahedron cut from the first octant by the plane x10+y3+z5=1\frac { x } { 10 } + \frac { y } { 3 } + \frac { z } { 5 } = 1 .


A) 01001y/301x/10y/3dzdydx\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 1 - y / 3 } \int _ { 0 } ^ { 1 - x / 10 - y / 3 } d z d y d x
B) 01001x/1001x/10y/3dzdydx\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 1 - x / 10 } \int _ { 0 } ^ { 1 - x / 10 - y / 3 } d z d y d x
C) 01003(1x/10) 05(1x/10y/3) dzdydx\int_{0}^{10} \int_{0}^{3(1-x / 10) } \int_{0}^{5(1-x / 10-y / 3) } d z d y d x
D) 010010(1y/3) 05(1x/10y/3) dzdydx\int_{0}^{10} \int_{0}^{10(1-y / 3) } \int_{0}^{5(1-x / 10-y / 3) } d z d y d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions