Solved

Solve the Problem y=e4xy = e ^ { - 4 x }

Question 52

Multiple Choice

Solve the problem.
-Find the center of mass of a thin infinite region in the first quadrant bounded by the coordinate axes and the curve y=e4xy = e ^ { - 4 x } if δ(x,y) =xy\delta ( x , y ) = x y .


A) xˉ=16,yˉ=29\bar { x } = \frac { 1 } { 6 } , \bar { y } = \frac { 2 } { 9 }
B) xˉ=14,yˉ=827\bar { x } = \frac { 1 } { 4 } , \bar { y } = \frac { 8 } { 27 }
C) xˉ=14,yˉ=29\bar { x } = \frac { 1 } { 4 } , \bar { y } = \frac { 2 } { 9 }
D) xˉ=16,yˉ=827\bar { x } = \frac { 1 } { 6 } , \bar { y } = \frac { 8 } { 27 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions