Solved

Use the Given Transformation to Evaluate the Integral u=2x+yz,v=x+y+z,w=x+y+2z(2x+yz)(zx+y)dxdydz\begin{aligned}u = & 2 x + y - z , v = - x + y + z , w = - x + y + 2 z \\& \iiint ( 2 x + y - z ) ( z - x + y ) d x d y d z\end{aligned}

Question 48

Multiple Choice

Use the given transformation to evaluate the integral.
- u=2x+yz,v=x+y+z,w=x+y+2z(2x+yz) (zx+y) dxdydz\begin{aligned}u = & 2 x + y - z , v = - x + y + z , w = - x + y + 2 z \\& \iiint ( 2 x + y - z ) ( z - x + y ) d x d y d z\end{aligned}
where RR is the parallelepiped bounded by the planes 2x+yz=2,2x+yz=6,x+y+z=3,x+y+z=42 x + y - z = 2,2 x + y - z = 6 , - x + y + z = 3 , - x + y + z = 4 , x+y+2z=6,x+y+2z=8- x + y + 2 z = 6 , - x + y + 2 z = 8


A) 2243\frac { 224 } { 3 }
B) 1123\frac { 112 } { 3 }
C) 336
D) 672

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions