Solved

Solve the Problem D\mathrm { D } Be the Region Bounded Below by The

Question 284

Multiple Choice

Solve the problem.
-Let D\mathrm { D } be the region bounded below by the xyx y -plane, above by the sphere x2+y2+z2=100x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 100 , and on the sides by the cylinder x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 . Set up the triple integral in cylindrical coordinates that gives the volume of DD using the order of integration dzdθdr\mathrm { dz } \mathrm {} \mathrm { d } \theta \mathrm { dr } .


A) 01002π09r2rdzdθdr\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 9 - r ^ { 2 } } } r d z d \theta d r
B) 01002π09r2dzdθdr\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 9 - r ^ { 2 } } } d z d \theta d r
C) 0302π0100r2rdzdθdr\int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 100 - r ^ { 2 } } } r d z d \theta d r
D) 0302π0100r2dzdθdr\int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 100 - r ^ { 2 } } } d z d \theta d r

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions