Solved

Solve the Problem DD Be the Region Bounded Below by The xyx y

Question 151

Multiple Choice

Solve the problem.
-Let DD be the region bounded below by the xyx y -plane, above by the sphere x2+y2+z2=64x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 64 , and on the sides by the cylinder x2+y2=36x ^ { 2 } + y ^ { 2 } = 36 . Set up the triple integral in cylindrical coordinates that gives the volume of DD using the order of integration dθdzdr\mathrm { d } \theta \mathrm { dz } \mathrm { dr } .


A) 08036r202πrdθdzdr\int _ { 0 } ^ { 8 } \int _ { 0 } ^ { \sqrt { 36 - r ^ { 2 } } } \int _ { 0 } ^ { 2 \pi } r d \theta d z d r
B) 06064r202πrdθdzdr\int _ { 0 } ^ { 6 } \int _ { 0 } ^ { \sqrt { 64 - r ^ { 2 } } } \int _ { 0 } ^ { 2 \pi } r d \theta d z d r
C) 02π064r208rdθdzdr\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 64 - r ^ { 2 } } } \int _ { 0 } ^ { 8 } r d \theta d z d r
D) 02π064r206rdθdzdr\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \sqrt { 64 - r ^ { 2 } } } \int _ { 0 } ^ { 6 } r d \theta d z d r

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions