Solved

Solve the Problem D\mathrm { D } Be the Region Bounded Below by the Cone

Question 425

Multiple Choice

Solve the problem.
-Let D\mathrm { D } be the region bounded below by the cone z=x2+y2z = \sqrt { x ^ { 2 } + y ^ { 2 } } and above by the sphere z=81x2y2z = \sqrt { 81 - x ^ { 2 } - y ^ { 2 } } . Set up the triple integral in cylindrical coordinates that gives the volume of using the order of integration dzdrdθ\mathrm { dz } \mathrm { dr } \mathrm { d } \theta .


A) 02π09081r2rdzdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 9 } \int _ { 0 } ^ { \sqrt { 81 - r ^ { 2 } } } r d z d r d \theta
B) 02π09/2081r2rdzdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 9 / \sqrt { 2 } } \int _ { 0 } ^ { \sqrt { 81 - r ^ { 2 } } } r d z d r d \theta
C) 0π/209/2081r2rdzdrdθ\int _ { 0 } ^ { \pi / 2 } \int _ { 0 } ^ { 9 / \sqrt { 2 } } \int _ { 0 } ^ { \sqrt { 81 - r ^ { 2 } } } r d z d r d \theta
D) 0π/209081r2rdzdrdθ\int _ { 0 } ^ { \pi / 2 } \int _ { 0 } ^ { 9 } \int _ { 0 } ^ { \sqrt { 81 - r ^ { 2 } } } r d z d r d \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions