Solved

 Set up the iterated integral for evaluating Df(r,θ,z)dzrdrdθ over the given region D. \text { Set up the iterated integral for evaluating } \iint _ { D } \int f ( r , \theta , z ) d z r d r d \theta \text { over the given region D. }

Question 427

Multiple Choice

 Set up the iterated integral for evaluating Df(r,θ,z) dzrdrdθ over the given region D. \text { Set up the iterated integral for evaluating } \iint _ { D } \int f ( r , \theta , z ) d z r d r d \theta \text { over the given region D. }
- D\mathrm { D } is the solid right cylinder whose base is the region between the circles r=3sinθr = 3 \sin \theta and r=4sinθr = 4 \sin \theta , and whose top lies in the plane z=5xyz = 5 - x - y .


A) 02π3sinθ4sinθ05r(cosθ+sinθ) f(r,θ,z) dzrdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 3 \sin \theta } ^ { 4 \sin \theta } \int _ { 0 } ^ { 5 - r ( \cos \theta + \sin \theta ) } f ( r , \theta , z ) d z r d r d \theta
B) 0π3sinθ4sinθ05r(cosθsinθ) f(r,θ,z) dzrdrdθ\int _ { 0 } ^ { \pi } \int _ { 3 \sin \theta } ^ { 4 \sin \theta } \int _ { 0 } ^ { 5 - r ( \cos \theta - \sin \theta ) } \mathrm { f } ( \mathrm { r } , \theta , \mathrm { z } ) \mathrm { dz } \mathrm { rdr } \mathrm { d } \theta
C) 02π3sinθ4sinθ05r(cosθsinθ) f(r,θ,z) dzrdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 3 \sin \theta } ^ { 4 \sin \theta } \int _ { 0 } ^ { 5 - r ( \cos \theta - \sin \theta ) } \mathrm { f } ( \mathrm { r } , \theta , \mathrm { z } ) \mathrm { dz } \mathrm { rdr } \mathrm { d } \theta
D) 0π3sinθ4sinθ05r(cosθ+sinθ) f(r,θ,z) dzrdrdθ\int _ { 0 } ^ { \pi } \int _ { 3 \sin \theta } ^ { 4 \sin \theta } \int _ { 0 } ^ { 5 - r ( \cos \theta + \sin \theta ) } \mathrm { f } ( \mathrm { r } , \theta , \mathrm { z } ) \mathrm { dz } \mathrm { rdr } \mathrm { d } \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions