Solved

Solve the Problem D\mathrm { D } Be the Region Bounded Below by The

Question 349

Multiple Choice

Solve the problem.
-Let D\mathrm { D } be the region bounded below by the xyx y -plane, on the side by the cylinder r=3cosθr = 3 \cos \theta , and on top by the paraboloid z=8r2\mathrm { z } = 8 \mathrm { r } ^ { 2 } . Set up the triple integral in cylindrical coordinates that gives the volume of D\mathrm { D } using the order of integration dzdrdθ\mathrm { dz } \mathrm { dr } \mathrm { d } \theta .


A) 02π03cosθ08r2rdzdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 3 \cos \theta } \int _ { 0 } ^ { 8 r ^ { 2 } } r d z d r d \theta
B) 0π/403cosθ08r2rdzdrdθ\int _ { 0 } ^ { \pi / 4 } \int _ { 0 } ^ { 3 \cos \theta } \int _ { 0 } ^ { 8 r ^ { 2 } } r d z d r d \theta
C) 0π03cosθ08r2rdzdrdθ\int _ { 0 } ^ { \pi } \int _ { 0 } ^ { 3 \cos \theta } \int _ { 0 } ^ { 8 r ^ { 2 } } r d z d r d \theta
D) 0π/203cosθ08r2rdzdrdθ\int _ { 0 } ^ { \pi / 2 } \int _ { 0 } ^ { 3 \cos \theta } \int _ { 0 } ^ { 8 r ^ { 2 } } r d z d r d \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions