Solved

Solve the Problem Q=7Q = 7 In Cylindrical Coordinates 02π0749r249r2dzdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 7 } \int _ { - \sqrt { 49 - r ^ { 2 } } } ^ { \sqrt { 49 - r ^ { 2 } } } d z d r d \theta

Question 125

Multiple Choice

Solve the problem.
-Set up the triple integral for the volume of the sphere Q=7Q = 7 in cylindrical coordinates.


A) 02π0749r249r2dzdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 7 } \int _ { - \sqrt { 49 - r ^ { 2 } } } ^ { \sqrt { 49 - r ^ { 2 } } } d z d r d \theta
B) 02π07049r2dzdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 7 } \int _ { 0 } ^ { \sqrt { 49 - r ^ { 2 } } } d z d r d \theta
C) 02π07049r2rdzdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 7 } \int _ { 0 } ^ { \sqrt { 49 - r ^ { 2 } } } r d z d r d \theta
D) 02π0749r249r2rdzdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 7 } \int _ { - \sqrt { 49 - r ^ { 2 } } } ^ { \sqrt { 49 - r ^ { 2 } } } r d z d r d \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions