Solved

Give an Appropriate Answer f(x,y)=xx+yf ( x , y ) = \frac { x } { x + y }

Question 280

Multiple Choice

Give an appropriate answer.
- f(x,y) =xx+yf ( x , y ) = \frac { x } { x + y }


A) fx=2x+y(x+y) 2;fy=x(x+y) 2\frac { \partial f } { \partial x } = \frac { 2 x + y } { ( x + y ) ^ { 2 } } ; \frac { \partial f } { \partial y } = \frac { x } { ( x + y ) ^ { 2 } }
B) fx=y(x+y) 2;fy=x(x+y) 2\frac { \partial f } { \partial x } = \frac { y } { ( x + y ) ^ { 2 } } ; \frac { \partial f } { \partial y } = - \frac { x } { ( x + y ) ^ { 2 } }
C) fx=y(x+y) 2;fy=x(x+y) 2\frac { \partial f } { \partial x } = - \frac { y } { ( x + y ) ^ { 2 } } ; \frac { \partial f } { \partial y } = - \frac { x } { ( x + y ) ^ { 2 } }
D) fx=2x+y(x+y) 2;fy=x(x+y) 2\frac { \partial f } { \partial x } = \frac { 2 x + y } { ( x + y ) ^ { 2 } } ; \frac { \partial f } { \partial y } = - \frac { x } { ( x + y ) ^ { 2 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions