Solved

Write a Chain Rule Formula for the Following Derivative ut\frac { \partial \mathrm { u } } { \partial \mathrm { t } }

Question 119

Multiple Choice

Write a chain rule formula for the following derivative.
- ut\frac { \partial \mathrm { u } } { \partial \mathrm { t } } for u=f(v) ;v=h(s,t) \mathrm { u } = \mathrm { f } ( \mathrm { v } ) ; \mathrm { v } = \mathrm { h } ( \mathrm { s } , \mathrm { t } )


A) ut=dvduut\frac { \partial \mathrm { u } } { \partial \mathrm { t } } = \frac { \mathrm { dv } } { \mathrm { du } } \frac { \partial \mathrm { u } } { \partial \mathrm { t } }
B) ut=dudvvt\frac { \partial \mathrm { u } } { \partial \mathrm { t } } = \frac { \mathrm { du } } { \mathrm { dv } } \frac { \partial \mathrm { v } } { \partial \mathrm { t } }
C) ut=dudv\frac { \partial \mathrm { u } } { \partial \mathrm { t } } = \frac { \mathrm { du } } { \mathrm { dv } }
D) ut=vt\frac { \partial \mathrm { u } } { \partial \mathrm { t } } = \frac { \partial \mathrm { v } } { \partial \mathrm { t } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions