Solved

Find an Upper Bound for the Magnitude |E| of the Error

Question 222

Multiple Choice

Find an upper bound for the magnitude |E| of the error in the approximation f(x, y) ≈ L(x, y) at the given point over the
given region R.
- f(x,y,z) =tan1xyzf ( x , y , z ) = \tan ^ { - 1 } x y z at (7,7,7) ;R:x70.2,y70.2,z70.2( 7,7,7 ) ; R : | x - 7 | \leq 0.2 , | y - 7 | \leq 0.2 , | z - 7 | \leq 0.2


A) E0.00000021| \mathrm { E } | \leq 0.00000021
B) E0.00000014| E | \leq 0.00000014
C) E0.00000016| E | \leq 0.00000016
D) E0.00000027| E | \leq 0.00000027

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions