Solved

Find the Extreme Values of the Function Subject to the Given

Question 169

Multiple Choice

Find the extreme values of the function subject to the given constraint.
- f(x,y) =y2x2,x2+y2=16f ( x , y ) = y ^ { 2 } - x ^ { 2 } , \quad x ^ { 2 } + y ^ { 2 } = 16


A) Maximum: 32 at (0,±42) ( 0 , \pm 4 \sqrt { 2 } ) ; minimum: 32- 32 at (±42,0) ( \pm 4 \sqrt { 2 } , 0 )
B) Maximum: 16 at (0,±4) ( 0 , \pm 4 ) ; minimum: 32- 32 at (±42,0) ( \pm 4 \sqrt { 2 } , 0 )
C) Maximum: 32 at (0,±42) ( 0 , \pm 4 \sqrt { 2 } ) ; minimum: 16- 16 at (±4,0) ( \pm 4,0 )
D) Maximum: 16 at (0,±4) ( 0 , \pm 4 ) ; minimum: 16- 16 at (±4,0) ( \pm 4,0 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions