Solved

The Vector R(t) Is the Position Vector of a Particle r(t)=3ti+(t+π3t2)k\mathbf { r } ( \mathrm { t } ) = \sqrt { 3 } \mathrm { ti } + \left( \mathrm { t } + \frac { \pi } { 3 } \mathrm { t } ^ { 2 } \right) \mathbf { k }

Question 17

Multiple Choice

The vector r(t) is the position vector of a particle at time t. Find the angle between the velocity and the acceleration vectors at time t = 0.
- r(t) =3ti+(t+π3t2) k\mathbf { r } ( \mathrm { t } ) = \sqrt { 3 } \mathrm { ti } + \left( \mathrm { t } + \frac { \pi } { 3 } \mathrm { t } ^ { 2 } \right) \mathbf { k }


A) π2\frac { \pi } { 2 }
B) 0
C) π3\frac { \pi } { 3 }
D) π\pi

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions