Solved

Find the Principal Unit Normal Vector N for the Curve r(t)=(t2+4)j+(2t1)kr ( t ) = \left( t ^ { 2 } + 4 \right) \mathbf { j } + ( 2 t - 1 ) \mathbf { k }

Question 14

Multiple Choice

Find the principal unit normal vector N for the curve r(t) .
- r(t) =(t2+4) j+(2t1) kr ( t ) = \left( t ^ { 2 } + 4 \right) \mathbf { j } + ( 2 t - 1 ) \mathbf { k }


A) N=1(t2+1) 3j+t(t2+1) 3k\mathbf { N } = - \frac { 1 } { \sqrt { \left( t ^ { 2 } + 1 \right) ^ { 3 } } } \mathbf { j } + \frac { t } { \sqrt { \left( t ^ { 2 } + 1 \right) ^ { 3 } } } \mathbf { k }
B) N=1t2+1jtt2+1k\mathbf { N } = \frac { 1 } { \sqrt { \mathrm { t } ^ { 2 } + 1 } } \mathbf { j } - \frac { \mathrm { t } } { \sqrt { \mathrm { t } ^ { 2 } + 1 } } \mathbf { k }
C) N=1t2+1j+tt2+1k\mathbf { N } = - \frac { 1 } { \sqrt { t ^ { 2 } + 1 } } \mathbf { j } + \frac { \mathrm { t } } { \sqrt { \mathrm { t } ^ { 2 } + 1 } } \mathbf { k }
D) N=1(t2+1) 3jt(t2+1) 3k\mathbf { N } = \frac { 1 } { \sqrt { \left( t ^ { 2 } + 1 \right) ^ { 3 } } } \mathbf { j } - \frac { \mathrm { t } } { \sqrt { \left( \mathrm { t } ^ { 2 } + 1 \right) ^ { 3 } } } \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions