Solved

Find the Unit Tangent Vector of the Given Curve T=23i23j13kT = \frac { 2 } { 3 } \mathbf { i } - \frac { 2 } { 3 } j - \frac { 1 } { 3 } \mathbf { k }

Question 28

Multiple Choice

Find the unit tangent vector of the given curve.
-r(t) = (10 - 2t) i + (2t - 3) j + (10 + t) k


A) T=23i23j13kT = \frac { 2 } { 3 } \mathbf { i } - \frac { 2 } { 3 } j - \frac { 1 } { 3 } \mathbf { k }
B) T=23i+23j+13k\mathrm { T } = - \frac { 2 } { 3 } \mathrm { i } + \frac { 2 } { 3 } \mathrm { j } + \frac { 1 } { 3 } \mathbf { k }
C) T=29i29j19kT = \frac { 2 } { 9 } \mathbf { i } - \frac { 2 } { 9 } \mathbf { j } - \frac { 1 } { 9 } \mathbf { k }
D) T=29i+29j+19kT = - \frac { 2 } { 9 } i + \frac { 2 } { 9 } j + \frac { 1 } { 9 } k

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions