Solved

Find V · U v=12,12\mathbf { v } = \left\langle \frac { 1 } { \sqrt { 2 } } , \frac { 1 } { \sqrt { 2 } } \right\rangle

Question 83

Multiple Choice

Find v · u.
- v=12,12\mathbf { v } = \left\langle \frac { 1 } { \sqrt { 2 } } , \frac { 1 } { \sqrt { 2 } } \right\rangle and u=(12,12) \mathbf { u } = \left( \frac { 1 } { \sqrt { 2 } } , \frac { - 1 } { \sqrt { 2 } } \right)


A) 12i12j\frac { 1 } { \sqrt { 2 } } \mathbf { i } - \frac { 1 } { \sqrt { 2 } } \mathbf { j }
B) 0
C) 22\frac { 2 } { 2 }
D) 22i22j\frac { 2 } { \sqrt { 2 } } \mathbf { i } - \frac { 2 } { \sqrt { 2 } } \mathrm { j }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions