Solved

One of Sin X, Cos X, and Tan X Is cosx=13,x\cos x = - \frac { 1 } { 3 } , \quad x

Question 178

Multiple Choice

One of sin x, cos x, and tan x is given. Find the other two if x lies in the specified interval.
- cosx=13,x\cos x = - \frac { 1 } { 3 } , \quad x in [π,3π2]\left[ \pi , \frac { 3 \pi } { 2 } \right]


A) sinx=223,tanx=22\sin x = - \frac { 2 \sqrt { 2 } } { 3 } , \tan x = 2 \sqrt { 2 }
B) sinx=223,tanx=22\sin x = \frac { 2 \sqrt { 2 } } { 3 } , \tan x = - 2 \sqrt { 2 }
C) sinx=223,tanx=22\sin x = \frac { 2 \sqrt { 2 } } { 3 } , \tan x = 2 \sqrt { 2 }
D) sinx=223,tanx=22\sin x = - \frac { 2 \sqrt { 2 } } { 3 } , \tan x = - 2 \sqrt { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions