Solved

Graph Hyperbolas Not Centered at the Origin
Find the Location (x+4)24(y4)2=4( x + 4 ) ^ { 2 } - 4 ( y - 4 ) ^ { 2 } = 4

Question 79

Multiple Choice

Graph Hyperbolas Not Centered at the Origin
Find the location of the center, vertices, and foci for the hyperbola described by the equation.
- (x+4) 24(y4) 2=4( x + 4 ) ^ { 2 } - 4 ( y - 4 ) ^ { 2 } = 4


A) Center: (4,4) ( - 4,4 ) ; Vertices: (6,4) ( - 6,4 ) and (2,4) ( - 2,4 ) ; Foci: (45,4) ( - 4 - \sqrt { 5 } , 4 ) and (4+5,4) ( - 4 + \sqrt { 5 } , 4 )
B) Center: (4,4) ( 4 , - 4 ) ; Vertices: (2,4) ( 2 , - 4 ) and (6,4) ( 6 , - 4 ) ; Foci: (45,4) ( 4 - \sqrt { 5 } , 4 ) and (4+5,4) ( 4 + \sqrt { 5 } , 4 )
C) Center: (4,4) ( - 4,4 ) ; Vertices: (5,5) ( - 5,5 ) and (1,5) ( - 1,5 ) ; Foci: (35,5) ( - 3 - \sqrt { 5 } , 5 ) and (3+5,5) ( - 3 + \sqrt { 5 } , 5 )
D) Center: (4,4) ( - 4,4 ) ; Vertices: (2,4) ( 2,4 ) and (2,4) ( - 2,4 ) ; Foci: (5,4) ( - \sqrt { 5 } , 4 ) and (5,4) ( \sqrt { 5 } , 4 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions