Solved

Graph Hyperbolas Not Centered at the Origin
Find the Location (y1)24(x3)2=4( y - 1 ) ^ { 2 } - 4 ( x - 3 ) ^ { 2 } = 4

Question 68

Multiple Choice

Graph Hyperbolas Not Centered at the Origin
Find the location of the center, vertices, and foci for the hyperbola described by the equation.
- (y1) 24(x3) 2=4( y - 1 ) ^ { 2 } - 4 ( x - 3 ) ^ { 2 } = 4


A) Center: (3,1) ( 3,1 ) ; Vertices: (3,1) ( 3 , - 1 ) and (3,3) ( 3,3 ) ; Foci: (3,15) ( 3,1 - \sqrt { 5 } ) and (3,1+5) ( 3,1 + \sqrt { 5 } )
B) Center: (3,1) ( - 3 , - 1 ) ; Vertices: (3,3) ( - 3 , - 3 ) and (3,1) ( - 3,1 ) ; Foci: (3,15) ( - 3 , - 1 - \sqrt { 5 } ) and (3,1+5) ( - 3 , - 1 + \sqrt { 5 } )
C) Center: (3,1) ( 3,1 ) ; Vertices: (3,2) ( - 3 , - 2 ) and (3,2) ;( 3,2 ) ; Foci: (3,5) ( 3 , - \sqrt { 5 } ) and (3,5) ( 3 , \sqrt { 5 } )
D) Center: (3,1) ( 3,1 ) ; Vertices: (4,0) ( 4,0 ) and (4,4) ( 4,4 ) ; Foci: (4,25) ( 4,2 - \sqrt { 5 } ) and (4,2+5) ( 4,2 + \sqrt { 5 } )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions