Solved

Decompose P/Q, Where Q Has a Nonrepeated Prime Quadratic Factor 6x4(x4)(x2+x+6)\frac { 6 x - 4 } { ( x - 4 ) \left( x ^ { 2 } + x + 6 \right) }

Question 231

Multiple Choice

Decompose P/Q, Where Q Has a Nonrepeated Prime Quadratic Factor
Write the form of the partial fraction decomposition of the rational expression. It is not necessary to solve for the
constants.
- 6x4(x4) (x2+x+6) \frac { 6 x - 4 } { ( x - 4 ) \left( x ^ { 2 } + x + 6 \right) }


A) Ax4+Bx+Cx2+x+6\frac { A } { x - 4 } + \frac { B x + C } { x ^ { 2 } + x + 6 }
B) Ax4+Bx2+x+6\frac { A } { x - 4 } + \frac { B } { x ^ { 2 } + x + 6 }
C) Ax4+Bx2+x+6+C(x4) (x2+x+6) \frac { \mathrm { A } } { x - 4 } + \frac { \mathrm { B } } { \mathrm { x } ^ { 2 } + \mathrm { x } + 6 } + \frac { \mathrm { C } } { ( \mathrm { x } - 4 ) \left( \mathrm { x } ^ { 2 } + \mathrm { x } + 6 \right) }
D) Ax4+Bx+Cx2+x+6+D(x4) (x2+x+6) \frac { \mathrm { A } } { \mathrm { x } - 4 } + \frac { \mathrm { Bx } + \mathrm { C } } { \mathrm { x } ^ { 2 } + \mathrm { x } + 6 } + \frac { \mathrm { D } } { ( \mathrm { x } - 4 ) \left( \mathrm { x } ^ { 2 } + \mathrm { x } + 6 \right) } Write the partial fraction decomposition of the rational expression.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions