Solved

Decompose P/Q, Where Q Has a Prime, Repeated Quadratic Factor 3x1(x2+x+1)2\frac { 3 x - 1 } { \left( x ^ { 2 } + x + 1 \right) ^ { 2 } }

Question 269

Multiple Choice

Decompose P/Q, Where Q Has a Prime, Repeated Quadratic Factor
Write the form of the partial fraction decomposition of the rational expression. It is not necessary to solve for the
constants.
- 3x1(x2+x+1) 2\frac { 3 x - 1 } { \left( x ^ { 2 } + x + 1 \right) ^ { 2 } }


A) Ax+Bx2+x+1+Cx+D(x2+x+1) 2\frac { A x + B } { x ^ { 2 } + x + 1 } + \frac { C x + D } { \left( x ^ { 2 } + x + 1 \right) ^ { 2 } }
B) Ax2+x+1+Bx+C(x2+x+1) 2\frac { \mathrm { A } } { \mathrm { x } ^ { 2 } + \mathrm { x } + 1 } + \frac { \mathrm { Bx } + \mathrm { C } } { \left( \mathrm { x } ^ { 2 } + \mathrm { x } + 1 \right) ^ { 2 } }
C) Ax2+x+1+B(x2+x+1) 2\frac { \mathrm { A } } { \mathrm { x } ^ { 2 } + \mathrm { x } + 1 } + \frac { \mathrm { B } } { \left( \mathrm { x } ^ { 2 } + \mathrm { x } + 1 \right) ^ { 2 } }
D) Ax+Bx2+x+1+C(x2+x+1) 2\frac { A x + B } { x ^ { 2 } + x + 1 } + \frac { C } { \left( x ^ { 2 } + x + 1 \right) ^ { 2 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions