Solved

Solve the Problem yy -Intercept β0\beta _ { 0 } For a Regression Line

Question 21

Multiple Choice

Solve the problem.
-A confidence interval for the yy -intercept β0\beta _ { 0 } for a regression line y=β0+β1xy = \beta _ { 0 } + \beta _ { 1 } x can be found by evaluating the limits in the interval below:
b0E<β0<b0+E\mathrm { b } _ { 0 } - \mathrm { E } < \beta _ { 0 } < \mathrm { b } _ { 0 } + \mathrm { E }
where E=(tα/2) se1n+x2/[x2(x) 2/n]E = \left( t _ { \alpha / 2 } \right) \operatorname { se } \sqrt { \frac { 1 } { n } + x ^ { 2 } / \left[ \sum x ^ { 2 } - \left( \sum x \right) ^ { 2 } / n \right] } The critical value tα/2t _ { \alpha / 2 } is found from the t-table using n2n - 2 degrees of freedom and b0b _ { 0 } is calculated in the usual way from the sample data.
Use the data below to obtain a 95%95 \% confidence interval estimate of β0\beta _ { 0 } .
x (hours studied)  2.54.55.17.911.6y (score on test)  6670608393\begin{array}{c|ccccc}x \text { (hours studied) } & 2.5 & 4.5 & 5.1 & 7.9 & 11.6 \\\hline y \text { (score on test) } & 66 & 70 & 60 & 83 & 93\end{array}


A) 31.10<β0<74.6631.10 < \beta _ { 0 } < 74.66
B) 33.50<β0<72.2633.50 < \beta _ { 0 } < 72.26
C) 37.83<β0<67.9337.83 < \beta _ { 0 } < 67.93
D) 28.10<β0<77.6628.10 < \beta _ { 0 } < 77.66

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions