Solved

Solve the Problem L\mathrm { L } , When Displaced Horizontally and Released, Oscillates with Harmonic Motion

Question 112

Multiple Choice

Solve the problem.
-A pendulum of length L\mathrm { L } , when displaced horizontally and released, oscillates with harmonic motion according to the equation y=Asin((g/L) t+π/2) y = A \sin ( ( \sqrt { g / L } ) t + \pi / 2 ) , where yy is the distance in meters from the rest position tt seconds after release, and g=9.8 m/s2g = 9.8 \mathrm {~m} / \mathrm { s } ^ { 2 } . Identify the period, amplitude, and phase shift when A=0.10 m\mathrm { A } = 0.10 \mathrm {~m} and L=0.98 m\mathrm { L } = 0.98 \mathrm {~m} .


A) 0.99 s,0.10 m,0.99 s0.99 \mathrm {~s} , 0.10 \mathrm {~m} , - 0.99 \mathrm {~s}
B) 1.99 s,0.10 m,0.50 s1.99 \mathrm {~s} , 0.10 \mathrm {~m} , - 0.50 \mathrm {~s}
C) 0.63 s,0.10 m,0.157 s0.63 \mathrm {~s} , 0.10 \mathrm {~m} , - 0.157 \mathrm {~s}
D) 1.99 s,0.10 m,0.50 s1.99 \mathrm {~s} , 0.10 \mathrm {~m} , 0.50 \mathrm {~s}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions