Solved

A) dydx=xy9\frac { d y } { d x } = - \sqrt [ 9 ] { x y }

Question 14

Multiple Choice

 Find dydx by implicit differentiation given that x89+y89=2\text { Find } \frac { d y } { d x } \text { by implicit differentiation given that } x ^ { \frac { 8 } { 9 } } + y ^ { \frac { 8 } { 9 } } = 2 \text {. }


A) dydx=xy9\frac { d y } { d x } = - \sqrt [ 9 ] { x y }
B) dydx=yx9\frac { d y } { d x } = \sqrt [ 9 ] { \frac { y } { x } }
C) dydx=9yx\frac { d y } { d x } = - 9 \sqrt { \frac { y } { x } }
D) dydx=xy9\frac { d y } { d x } = \sqrt [ 9 ] { x y }
E) dydx=9xy\frac { d y } { d x } = - 9 \sqrt { \frac { x } { y } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions