Solved

 Use logarithmic differentiation to find the derivative of y=x3629x4(x1)14\text { Use logarithmic differentiation to find the derivative of } y = \frac { x ^ { 36 } \sqrt { 29 x - 4 } } { ( x - 1 ) ^ { 14 } } \text {. }

Question 136

Multiple Choice

 Use logarithmic differentiation to find the derivative of y=x3629x4(x1) 14\text { Use logarithmic differentiation to find the derivative of } y = \frac { x ^ { 36 } \sqrt { 29 x - 4 } } { ( x - 1 ) ^ { 14 } } \text {. }


A) dydx=x3629x4(x1) 14\frac { d y } { d x } = \frac { x ^ { 36 } \sqrt { 29 x - 4 } } { ( x - 1 ) ^ { 14 } }
B) dydx=x3629x4(x1) 14(36x+292(29x4) 14x1) \frac { d y } { d x } = \frac { x ^ { 36 } \sqrt { 29 x - 4 } } { ( x - 1 ) ^ { 14 } } \left( \frac { 36 } { x } + \frac { 29 } { 2 ( 29 x - 4 ) } - \frac { 14 } { x - 1 } \right)
C) dydx=x3629x4(x1) 14(36x292(29x4) 14x1) \frac { d y } { d x } = \frac { x ^ { 36 } \sqrt { 29 x - 4 } } { ( x - 1 ) ^ { 14 } } \left( \frac { 36 } { x } - \frac { 29 } { 2 ( 29 x - 4 ) } - \frac { 14 } { x - 1 } \right)
D) dydx=36x29x414(x1) 13\frac { d y } { d x } = \frac { 36 x \sqrt { 29 x - 4 } } { 14 ( x - 1 ) ^ { 13 } }
E) dydx=x3629x4(x1) 14(36x292(29x4) +14x1) \frac { d y } { d x } = \frac { x ^ { 36 } \sqrt { 29 x - 4 } } { ( x - 1 ) ^ { 14 } } \left( \frac { 36 } { x } - \frac { 29 } { 2 ( 29 x - 4 ) } + \frac { 14 } { x - 1 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions